
Visual Basic Programming Conventions from Microsoft
Consulting Services

1. Naming Conventions

1.1 Objectives
n To help programmers (especially in multiprogrammer projects) standardize and decode

the structure and logic of an application
n To be precise, complete, readable, memorable, and unambiguous
n To be consistent with other language conventions (most importantly the Visual Basic™

Programmer's Guide and standard Microsoft® Windows™ Hungarian C)
n To be efficient from a string size and labor standpoint, thus allowing a greater opportunity

for longer/fuller object names
n To define the minimum requirements necessary to do the above

NoteOn pages 32 and 33 of the Visual Basic 2 Programmer's Guide, Visual Basic has defined
control naming conventions that will likely be adopted by many corporations and Visual Basic
ISVs. As a result, it would take a very strong argument to justify deviating from the Visual
Basic 2 standard without causing a lot of heartache and confusion. Lacking such a compelling
argument, this document therefore is a superset of the published Visual Basic conventions.

1.2 Conventions

1.2.1 Option Explicit

"Option Explicit" must always be used to force proper variable declarations and aid good
variable commenting. The time lost trying to track down bugs caused by typos
(aUserNameTmp vs. sUserNameTmp vs. sUserNameTemp) far outweighs the time needed to
Dim variables.

1.2.2 Control naming

The following table defines our standard Control name prefixes. (These are consistent with
those documented in the Visual Basic 2 Programmers Guide.)

Table 1. Standard Control Name Prefixes

PrefixControl Type
Description

ani Animation button
bedPen Bedit
cboCombobox and

dropdown Listbox
chkCheckbox
clp Picture Clip
cmdCommand Button
comCommunications
ctr Control (Used within

procs when the specific
type is unknown)



db ODBC Database
dir Dir List Box
dlg Visual Basic Pro

Common Dialog
drvDrive List Box
ds ODBC Dynaset
fil File List Box
frmForm
fra Frame
gauGauge
gpbGroup Push Button
grdGrid
hedPen Hedit
hsbHorizontal Scroll Bar
imgImage
ink Pen Ink
keyKeyboard key status
lbl Label
lin Line
lst Listbox
mpmMAPI Message
mpsMAPI Session
mciMCI
mnuMenu
optOption Button
ole Ole Client
pic Picture
pnl 3d Panel
shpShape
spnSpin Control
txt Text/Edit Box
tmrTimer
vsbVertical Scroll Bar

1.3 Control Prefix Notes

1.3.1 Menus

Because Menu handlers can be so numerous, Menu names require a little more attention.
Menu prefixes therefore continue beyond the initial Mnu label by adding an additional (upper
case) character prefix for each level of nesting, with the final menu caption being spelled out
at the end of the name string. When there is ambiguity caused by character duplications, such
as a menu having both main Format and File menus, use an additional (lower case) character
to differentiate the items. Examples:

Menu
Caption
Sequence

Menu Handler
Name

Help.
Contents

mnuHContents

File.Open mnuFiOpen
Format.
Character

mnuFoCharacter

File.Send.
Fax

mnuFSFax



File.Send.
Email

mnuFSEmail

This results in all the family members of a particular menu group being listed right next to each other.
This multi-tiered format provides a very direct way to find a menu handler, especially when there are a
great many of them.

1.3.2 Other controls

For new controls not listed above, try to come up with a unique 3-character prefix. However, it
is more important to be clear than to stick to 3 characters. For derivative controls, such as an
enhanced list box, extend the prefixes above so that there is no confusion about what control
is really being used. For example, a control instance created from the Visual Basic Pro 1.0 3D
Frame could use a prefix of fra3d to make sure there is no confusion over which control is
really being used.

1.3.3 Variable and routine naming

Variable and function names have the following structure:

<prefix><body><qualifier><suffix>
The prefix describes the use and the scope of the variable, as in iGetRecordNext and
sGetNameFirst. The qualifier is used to denote standard derivatives of a base variable or
function, as in iGetRecordNext and sGetNameFirst. The suffix is the optional Visual Basic
type char ($, %, #, and so on).

Prefixes

The following table defines variable/function name prefixes that are based on Hungarian C.
These must be used universally, even when Visual Basic suffixes (such as %, &, #, and so on)
are also used.

Table 2. Prefixes for Variable and Function Names

PrefixVariable Use
Description (precedes
Control prefix and
body)

b Boolean (vb type = %)
c Currency - 64 bits (vb

type = @)
d Double - 64 bit signed

quantity (vb type = #)
db Database
ds Dynaset
dt Date+Time (vb type =

variant)
f Float/Single - 32 bit

signed floating point (vb
type = !)

h Handle (vb type = %)
i Index (vb type = %)
l Long - 32 bit signed

quantity (vb type = &)
n Integer (sizeless,

counter) (vb type = %)
s String (vb type = $)
u Unsigned - 16 bit



unsigned quantity (must
use &)

ul Unsigned Long - 32 bit
unsigned quantity (must
use #)

vnt Variant (big and ugly to
discourage use and
make sure it gets the
reader's attention)

w Word - 16 bit signed
quantity (vb type = %)

a Array
User defined type

PrefixScope or Use
(precedes Use prefix
above)

g Global
m Local to module or form
st Static variable
v Variable passed by

value (local to a routine)
r Variable passed by

reference (local to a
routine)

Hungarian is as valuable in Visual Basic as it is in C because the Visual Basic type suffixes alone do not
provide standard (and valuable) information about what a variable/function is used for or where it is
accessible. For example, iSend (which might be a count of the number of messages sent), bSend
(which might be a flag/Boolean defining the success of the last Send operation), and hSend
(which might be a handle to the Comm interface) all succinctly tell a programmer something
very different. This information is fundamentally lost when the name is reduced down to
Send%. Scope prefixes such as g and m also help reduce the problem of name contention,
especially in multideveloper projects. Hungarian is also well known to Windows programmers
and constantly referenced in Microsoft and industry programming books. Additionally, the
bond between C programmers and Visual Basic programmers can be expected to become
much stronger as Visual C++ begins to live up to its potential. This transition will result in
many Visual Basic programmers moving to C for the first time and many programmers moving
fluidly back and forth between each environment.

Body

The body of variable and routine names should use mixed case and should be as long as
needed to describe their purpose. Function names should also begin with a verb, such as
InitNameArray or CloseDialog.

For frequently used or long terms, abbreviations (such as Init, Num, Tbl, Cnt, and Grp for
Initialization, Number, Table, Count, and Group) are suggested to help keep name lengths
reasonable. Names greater than 32 characters generally begin to inhibit readability on VGA
displays. When abbreviations are used, they must be used consistently throughout the
application. Randomly switching between "Cnt" and "Count" within a project will greatly
frustrate developers.

Qualifiers

Often related variables and routines are used to manage and manipulate a common object. In
these cases it can be very helpful to use standard qualifiers to label the derivative variables
and routines. Although putting the qualifier after the body of the name might seem a little
awkward (as in sGetNameFirst, sGetNameLast instead of sGetFirstName, and so on), this
practice will help order these names together in the Visual Basic editor routine lists, making
the logic and structure of the application easier to understand.



The following table defines common qualifiers and their standard meaning.

Table 3. Common Qualifiers

QualifierDescription (follows
Body)

FirstFirst element of a set.
LastLast element of a set.
NextNext element in a set.
PrevPrevious element in a

set.
CurCurrent element in a set.
MinMinimum value in a set.
MaxMaximum value in a set.
SaveUsed to preserve another

variable which must be
reset later.

TmpA "scratch" variable
whose scope is highly
localized within the code.
The value of a Tmp
variable is usually only
valid across a set of
contiguous statements.

Src Source. Frequently used
in comparison and
transfer routines.

Dst Destination. Often used
in conjunction with
Source.

1.3.4 Constant naming
n The body of constant names are described in UPPER_CASE with underscores ("_")

between words.
n Although standard Visual Basic constants do not include Hungarian use information,

prefixes such as i, s, g, and m can be very useful in understanding the value and scope of
a constant, so constant names follow the same rules as variables. Examples:

mnUSER_LIST_MAX'Max entry limit for
User list (integer
value, local to
module)

gsNEW_LINE'New Line
character string
(global to entire
application)

1.3.5 Variant data types

With the single exception listed below, variants should NOT be used. When a type conversion
is needed, variant use would probably provide a slight performance win over the explicit basic
type conversion routines (val(), str$(), and the like), but this gain is not sufficient to overcome
the ambiguity and general sloppiness they allow in code statements.

Example:

vnt1 = "10.01" : vnt2 = 11 : vnt3 = "11" : vnt4 = "x4"
vntResult = vnt1 + vnt2' Does vntResult = 21.01 or 10.0111?



vntResult = vnt2 + vnt1' Does vntResult = 21.01 or 1110.01?
vntResult = vnt1 + vnt3' Does vntResult = 21.01 or 10.0111?
vntResult = vnt3 + vnt1' Does vntResult = 21.01 or 1110.01?
vntResult = vnt2 + vnt4' Does vntResult = 11x4 or ERROR?
vntResult = vnt3 + vnt4' Does vntResult = 11x4 or ERROR?
Additionally, the type conversion routines assist in documenting implementation details, which
make reading, debugging, and maintaining code more straightforward.

Example:

(iVar1 = 5 + val(sVar2)'use this
vntVar1 = 5 + vntVar2 'not this!

Exception

While working with databases, messages, DDE, or OLE, a generic service routine can receive
data that it does not need to know the type of in order to process or pass on.

Example:

Sub ConvertNulls(rvntOrg As Variant, rvntSub As Variant)
'If rvntOrg = Null, replace the Null with rvntSub
If IsNull(rvntOrg) Then rvntOrg = rvntSub

End Sub

2. Commenting
n All procedures and functions must begin with a brief comment describing the functional

characteristics of the routine (what it does). This description should not describe the
implementation details (how it does it) because these often change over time, resulting in
unnecessary comment maintenance work or, worse, erroneous comments. The code itself
and any necessary inline or local comments will describe the implementation. Parameters
passed to a routine should be described (a) if they are not obvious and (b) when specific
ranges are assumed by the routine. Function return values and global variables that are
changed by the routine (especially through reference parameters) must also be described
at the beginning of each routine.

n Every nontrivial variable declaration should include an inline comment describing the use
of the variable being declared.

n Variables, controls, and routines should be named clearly enough that inline commenting
is only needed for complex or nonobvious implementation details.

n An overview description of the application enumerating primary data objects, routines,
algorithms, user interface dialogs, database and file system dependencies, and so on,
should be included at the start of the .BAS module that contains the project's Visual Basic
generic constant declarations.
NoteThe Project window inherently describes the list of files in a project, so this overview
section only needs to provide information on the most important files and modules or files
that the Project window doesn't know about, such as .INI or database files.

3. Code Formatting

Because many programmers still use VGA displays, screen real estate must be conserved as
much as possible while still allowing code formatting to reflect logic structure and nesting. For
this reason:
n Standard (tab-based) block nesting indentations should be from two to four spaces. More

than four spaces is unnecessary and causes unnecessary statement hiding through
truncation. Fewer than two is not effective in reflecting logic nesting.



n The functional overview comment of a routine should be indented one space. The highest
level statements that follow the overview comment should be indented one tab, with each
nested block indented an additional tab. Example:

Function iFindUser (rasUserList() as String, rsTargetUser as
String) as Integer
'Search UserList and if found, return index of first occurrence of
TargetUser,
' else return -1

Dim i as Integer'loop counter
Dim bFound as Integer'target found flag
iFindUser = -1
i = 0
While i <= Ubound(rasUserList) and Not bFound

If rasUserList(i) = rsTargetUser Then
bFound = True
iFindUser = i
End If
Wend

End Function
n Variables and nongeneric constants should be grouped by function rather than being split

off into isolated areas or special files. (Visual Basic generic constants such as
"HOURGLASS" should be grouped in a generic section of a main global file so that they
do not complicate the reading of the application-specific declarations.)

4. Operators
n Always use "&" when concatenating strings and "+" when working with numerical values.

Using only "+" can cause problems when operating on two variants. For example:

vntVar1 = "10.01"
vntVar2 = 11
vntResult = vntVar1 + vntVar2 'vntResult = 21.01
vntResult = vntVar1 & vntVar2 'vntResult = 10.0111

5. Scope
n Always define variables with the smallest scope possible. Global variables can create

enormously complex state machines and make understanding the logic of an application
extremely difficult. They also make the reuse and maintenance of your code much more
difficult. If you have to use globals, keep their declarations grouped by functionality and
comment them well.

n With the exception of globals that should not be passed, procedures and functions should
only operate on objects that are passed to them. Global variables that are used in routines
should be identified in the general comment area at the beginning of the routine.

n Likewise, try to put as much logic and as many user interface objects in Dialog Boxes as
possible. This will help segment your application's complexity and minimize its run-time
overhead.

(c) 1993 Microsoft Corporation. All rights reserved.




